Let’s get started.
Tell us what you’re working on, we’ll answer right away.
Electric vehicles are helping us meet global goals on climate change. They’re eco-friendly and don’t emit greenhouse gasses. At least not directly.
They run on electricity, and many parts of the world still use fossil fuels to produce it. We also use energy to produce EVs and their batteries. One way to influence carbon offset is to optimize energy consumption during charging EVs.
They connect their monitoring device to an electric grid inside the house. It tracks energy consumption from all electric devices, collects the data from solar panels and measures carbon footprint, while comparing it to country-wide measures.
They approached us with a request to create an algorithm that optimizes the consumption of electric energy and reduces the carbon footprint when charging EVs.
We had to optimize charging, make the entire process more eco-friendly and help households to cut electricity costs.
To do that, we had to analyze historical data from many households and real-time data of carbon emissions at a country level to create an algorithm.
However, it would take at least 10.000 real hours to train it properly.
Research and simulation phase
We created a simulator by using historical data, simulated 10.000 hours and trained our algorithm. The simulator included the historical data from typical households and connected EVs.
This allowed us to train our algorithm in just a few days.
Implementation phase
We implemented the algorithm that we developed through the simulator in the cloud of our client. This time, we tested it by using real-time data from houses and connected EVs, as well as solar panels.
Technology: Python, AWS, MySQL, DynamoDB, ActiveMQ
To test the efficiency of our algorithm, we used two baseline strategies to compare its results.
The user could choose whether to optimize based on CO2 reduction or energy consumption.
Our optimization algorithm decreased energy costs and carbon footprint by 15% after 5.000 hours of use, compared to these two baseline strategies.
“Their algorithm helped us create a greener, more sustainable and optimized future for households country-wide.”
Product Manager in our client’s company
Green technologies play a huge role in our company’s vision.
We’re SmartCat and we’re a brain-powered AI company with offices in the Netherlands, USA, and Serbia.
We keep 3 departments crucial for AI development under one roof – Data Science, Data Engineering, and DevOps and that makes a one-stop shop for AI development projects.
Interested in using AI to optimize consumption and reduce carbon footprint? Reach out to us today at info@smartcat.io
Tell us what you’re working on, we’ll answer right away.
Optimisation and utilization of the space
Surveillance Video Processing